
14 IT Pro May/June 2013 P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 1520-9202/13/$31.00 © 2013 IEEE

Insecure IT
©

 R
ou

te
6

6
| D

re
am

st
im

e.
co

m

ABAC and RBAC:
Scalable, Flexible,

and Auditable Access

Management

A
s user populations of
information systems
have expanded, the
challenge of control-

ling access to resources using
security policies has grown. Re-
searchers and system developers
have simplified the administrative
process by using groups of users
who have the same authoriza-
tions. User groups were the pre-
cursor to role-based access control.
RBAC groups permissions into
roles and requires all access to
occur through the RBAC system.
Groups of permissions can then
be readily provided to users in
the simple operation of assigning
roles. An enterprise’s roles must
be engineered to support security
and business rules.

Over time, enterprises recog-
nized a need for going beyond
RBAC’s groups of users and per-
missions. They needed to include
attributes, such as time of day
and user location, for distributed,
dynamically changing systems.
During this period, at tribute-
based access control was identified
as a replacement for or adjunct to
RBAC. ABAC uses labeled ob-
jects and user attributes instead
of permissions to provide access
control in a f lexible manner.

It was argued that ABAC could
provide the flexibility needed
in access control and that, if de-
sired, RBAC could coexist with
ABAC simply by considering a
role as another attribute. Because
ABAC doesn’t use roles with per-
missions, it also avoids the need
to engineer those roles and per-
missions. RBAC researchers have
come up with several schemes for
providing this attribute compo-
nent—using constrained roles, for
example.

Role- vs. Attribute-
Based Access
A certain simplicity in the ABAC
idea is appealing. If a user has at-
tributes that are reflected in the
objects they want to access, then
access is granted. On the other
hand, with RBAC, the permis-
sions granted to a user through
roles must be evaluated to de-
termine if the desired access will
be granted. That is, a user is pre-
assigned a set of roles (and thus
permissions) with RBAC, while
ABAC permissions can be ac-
quired dynamically by virtue of
the user’s attributes. RBAC per-
missions are defined as an opera-
tion on an object, so only defined
combinations of operations and

objects are allowed. To achieve
this granularity of access in ABAC
requires rule sets that apply when
attributes are evaluated.

When ABAC and RBAC are dis-
cussed together, the reasoning of-
ten goes like this:

•	RBAC has been widely adopted
and provides administrative and
security advantages.

•	However, it’s outdated, expen-
sive to implement, and unable
to accommodate real-time envi-
ronmental states as access con-
trol parameters.

•	ABAC is newer, simpler to im-
plement, and accommodates
real-time environmental states
as access control parameters.

•	RBAC and ABAC can both be
used by viewing roles as user
attributes.

These statements are true and
point toward using ABAC with
role names as attributes. However,
if this approach is taken, the re-
sult can be chaos.

RBAC is role-centric and ABAC
is attribute-centric. Once roles
become attributes, the advantages
of RBAC are lost. Role names are
still associated with users, but
the consideration that roles are

Ed Coyne, DRC
Timothy R. Weil, Coalfire

itpro-15-03-insec.indd 14 4/30/13 1:26 PM

 computer.org/ITPro 15

collections of permissions is no
longer the case.

Role-Based Access Control
With RBAC, roles can be well un-
derstood by their names, and they
determine the sets of permissions
to be granted to users. In addi-
tion, it’s easy to audit which users
have access to a given permission
and what permissions have been
granted to a given user. A limited
number of roles can represent
many users or user types, and
roles can be assigned to users by
non-expert personnel.

However, roles must be engi-
neered before RBAC can be used.
Furthermore, RBAC must be con-
strained to handle dynamically
changing attributes, such time
of day and location. Core RBAC
can’t handle such attributes.

Attribute-Based
Access Control
With ABAC, there’s no need to en-
gineer roles as long as role names
aren’t used as attributes. Dynami-
cally changing attributes, such as
time of day and location, can be
accommodated in access control
decisions. However, a potentially
large number of attributes must
be understood and managed,
and attributes must be selected
by expert personnel. Further-
more, attributes have no mean-
ing until they’re associated with
a user, object, or relation, and it’s
not practical to audit which users
have access to a given permission
and what permissions have been
granted to a given user.

Implications
The downside of RBAC entail-
ing a substantial role engineer-
ing effort is balanced by ABAC
entailing a substantial attribute
engineering effort. Furthermore,
the perceived inability of RBAC to
incorporate environmental attri-
butes isn’t present if constrained

RBAC is used. ABAC can’t audit
user access to certain permis-
sions, so RBAC with attributes
is preferable to ABAC with role
names as attributes.

A Judicious Combination
In an earlier article,1 we defined
attribute-centric and role-centric
access control models. Attribute-
centric access control is where at-
tributes control what resources a
user can access. A role name (not
a role, since a role has permissions
in addition to its name) can be
included in the attribute-centric
model as one of the attributes as-
signed to a user. Thus, attribute-
centric access control doesn’t
encompass RBAC, because per-
missions aren’t included in the
model.

In the role-centric access con-
trol model, roles with permis-
sions determine what resources
a user can access and how. At-
tributes can be added to RBAC
to provide the flexibility needed
in access control. Because ex-
isting RBAC models, defined in
ANSI INCITS 359-2012 Informa-
tion Technology—Role Based Access
Control,2 include constraints, it’s
an obvious solution to include at-
tributes in RBAC by considering
attributes to be constraints on ac-
cess control decisions. In fact, this
inclusion of attributes in RBAC as
constraints has been written into
a new standard.3

So what difference does it make
whether we use an attribute-
centric model (ABAC) or a role-
centr ic model (R BAC)? Both
seem to include attributes and
roles. However, ABAC can con-
tain role names only, not roles
with their permissions. There-
fore, to simulate RBAC, ABAC
must include rules controlling
the modes of access to the pro-
tected objects. In RBAC, the
permissions explicitly define the
modes of access.

Also pointed out in our ear-
lier article is the fact that RBAC
permits simplified auditing of the
resources available to a given user
as well as the users who have ac-
cess to a given resource.1 Auditing
is accomplished simply by review-
ing the roles available to a user,
then enumerating permissions
within this set of roles. Since the
roles and permissions have been
defined statically, a full enumera-
tion of user-permission associa-
tions is easy to accomplish very
quickly.

To accomplish this in ABAC
requires an exhaustive enumera-
tion of the attributes of a user
and the corresponding attributes
of the available protected objects.
The full set of access rules, which
could number in thousands in
some cases, must then be instanti-
ated with user and object attribute
values. Because attributes can
change dynamically, determin-
ing a user’s potential permission
set will also require instantiating
rules with all possible attribute
values while a user is active.

For example, if a user is currently
on project A but also sometimes
works on projects B and C, rules
must be instantiated and evaluat-
ed with each of these three values.
If the user has another attribute with
three possible values (1, 2, or 3),
then rules must be instantiated
with nine possible value combina-
tions for these two attributes. We
quickly reach a combinatorial ex-
plosion of possible rule instantia-
tions to evaluate: with k attributes
of v values each, we’ll need a set
of vk rule evaluations. We again
point out that with role name as
only an attribute in ABAC, the
auditing advantage of RBAC isn’t
present.

Conceptually, ABAC and RBAC
are similar. Figure 1 illustrates
this similarity. It is the properties
of each model that give them their
nature and behavior.

itpro-15-03-insec.indd 15 4/30/13 1:26 PM

16 IT Pro May/June 2013

Insecure IT

As illustrated in Figure 1, com-
bining ABAC and RBAC isn’t an
architectural challenge. Each
model would have its own rule
base in the policy information
point (PIP). The policy decision
point (PDP) would need the
capability to evaluate these rules
to produce an access decision.

Thus, it ’s possible to obtain
the f lexibility and advantages of
ABAC while maintaining RBAC’s
advantages for analysis and risk
control, if roles are used to define
the maximum set of permissions
that users can have. Clearly, the
subject can’t receive any permis-
sion not authorized for the active
role or restricted by the attribute-
based constraints. Permissions
available to users in this approach
therefore will be the intersection
of P and R, where P is the set of
permissions assigned to the sub-
ject’s active roles and R is the set
of permissions specified by the
applicable ABAC rules. The user’s
role set therefore determines the
maximum set of available permis-
sions, supporting the principle of
least privilege and allowing easy
review of user permissions. Note
that if P (the RBAC permission

set) is all permissions, the system
is equivalent to a “conventional”
ABAC approach, where permis-
sions are determined solely by
attributes.

A BAC and RBAC, although
similar, have particular
advantages and disad-

vantages. When combined judi-
ciously, the combination can pro-
vide access control that’s scalable,
f lexible, auditable, and under-
standable. Significantly, current
research in this topic includes the
Role-Centric Attribute-Based Ac-
cess Control (RABAC) work by
Jin Xin and his colleagues,4 which
has realized one of the first refer-
ence models combining both roles
and attributes in a reliable manner
that preserves the best features of
both access control methods.

Commercial implementations
are also developing that use both
role-centric and dynamic role
capabilities combined with the
features of ABAC’s fine-grained
authorization,5 demonstrating
that the approach defined by
ANSI/INCITS 494-2012 is prac-
tical, and can combine the best

features of RBAC and ABAC for
the enterprise.

References
 1. D.R. Kuhn, E.J. Coyne, and T.R.

Weil, “Adding Attributes to Role
Based Access Control,” Computer,
vol. 43, no. 6, 2010; http://csrc.nist.
gov/groups/SNS/rbac/documents/
kuhn-coyne-wei l-10.pdf.

 2. ANSI INCITS 359-2012 Information
Technology—Role Based Access Con-
trol, InterNational Committee for
Information Technology Standards
(INCITS), May 2012; www.techstreet.
com/products/1837530.

 3. ANSI INCITS 494-2012 Information
Technology—Role Based Access Control—
Policy-Enhanced, InterNational Com-
mittee for Information Technology
Standards (INCITS), Aug. 2012; http://
webstore.ansi.org/RecordDetail.aspx
?sku=INCITS+494-2012.

 4. J. Xin, R. Krishnan, and R. Sandhu,
“A Role-Based Administration
Model for Attributes,” Proc. 1st Int’l
Workshop Secure and Resilient Archi-
tectures and Systems, ACM, 2012,
pp. 7–12.

 5. “Best Pract ices in Enterpr ise
Authorization: The RBAC/ABAC
Hybrid Approach,” white paper,
EmpowerID, 2013; http://blog.
empowerid.com/Portals/174819/docs/
EmpowerID-WhitePaper-RBAC-
ABAC-Hybrid-Model.pdf.

Edward J. Coyne is a senior security
engineer in the High Performance Tech-
nologies Group at DRC. Contact him at
ecoyne@drc.com.

Timothy R. Weil is a senior security
consultant at Coalfire. Contact him at
tim.weil@coalfire.com.

Figure 1. Attribute-based and role-based access control. Permissions
and attributes can take part in access decisions.

PEP – Policy enforcement point
PDP – Policy decision point
PAP – Policy administration point
PIP – Policy information point

PEP Protected
resource

Request

Request

Request Decisions
and
obligation

Request Policy

Permissions

Attributes
PDP

PAP

PIP

RBAC

ABAC

External
information

source

 Selected CS articles and

 columns are available for free at

http://ComputingNow.computer.org.

itpro-15-03-insec.indd 16 4/30/13 1:26 PM

